Insulin increases near-membrane but not global Ca2+ in isolated skeletal muscle.

نویسندگان

  • J D Bruton
  • A Katz
  • H Westerblad
چکیده

It has long been debated whether changes in Ca2+ are involved in insulin-stimulated glucose uptake in skeletal muscle. We have now investigated the effect of insulin on the global free myoplasmic Ca2+ concentration and the near-membrane free Ca2+ concentration ([Ca2+]mem) in intact, single skeletal muscle fibers from mice by using fluorescent Ca2+ indicators. Insulin has no effect on the global free myoplasmic Ca2+ concentration. However, insulin increases [Ca2+]mem by approximately 70% and the half-maximal increase in [Ca2+]mem occurs at an insulin concentration of 110 microunits per ml. The increase in [Ca2+]mem by insulin persists when sarcoplasmic reticulum Ca2+ release is inhibited but is lost by perfusing the fiber with a low Ca2+ medium or by addition of L-type Ca2+ channel inhibitors. Thus, insulin appears to stimulate Ca2+ entry into muscle cells via L-type Ca2+ channels. Wortmannin, which inhibits insulin-mediated activation of glucose transport in isolated skeletal muscle, also inhibits the insulin-mediated increase in [Ca2+]mem. These data demonstrate a new facet of insulin signaling and indicate that insulin-mediated increases in [Ca2+]mem in skeletal muscle may underlie important actions of the hormone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscle cell depolarization induces a gain in surface GLUT4 via reduced endocytosis independently of AMPK.

Contracting skeletal muscle increases glucose uptake to sustain energy demand. This is achieved through a gain in GLUT4 at the membrane, but the traffic mechanisms and regulatory signals involved are unknown. Muscle contraction is elicited by membrane depolarization followed by a rise in cytosolic Ca2+ and actomyosin activation, drawing on ATP stores. It is unknown whether one or more of these ...

متن کامل

Syntaxin 4 transgenic mice exhibit enhanced insulin-mediated glucose uptake in skeletal muscle.

Insulin-stimulated translocation of GLUT4 vesicles from an intracellular compartment to the plasma membrane in 3T3L1 adipocytes is mediated through a syntaxin 4 (Syn4)- and Munc18c-dependent mechanism. To investigate the impact of increasing Syn4 protein abundance on glucose homeostasis in vivo, we engineered tetracycline-repressible transgenic mice to overexpress Syn4 by fivefold in skeletal m...

متن کامل

Inhibition by calcium antagonist of coupling of insulin binding and insulin action on glucose transport in isolated fat cells.

In the present study we examined the influence of calcium antagonist, nicardipineHCl, on insulin binding and insulin action on glucose transport in isolated fat cells. The calcium antagonist did not influence the time course of 125I-insulin binding or the insulin concentration required for 50% displacement of 125I-insulin binding. Calcium antagonist prolonged the lag time of insulin action on g...

متن کامل

Phosphatidylinositol 4-kinase, but not phosphatidylinositol 3-kinase, is present in GLUT4-containing vesicles isolated from rat skeletal muscle.

Insulin stimulates the rate of glucose transport into muscle and adipose cells by translocation of glucose transporter (GLUT4)-containing vesicles from an intracellular storage pool to the surface membrane. This event is mediated through the insulin receptor substrates (IRSs), which in turn activate phosphatidylinositol (PI) 3-kinase isoforms. It has been suggested that insulin causes attachmen...

متن کامل

Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release

Reduced homeostatic capacity for intracellular Ca2+ ([Ca2+]i) movement may underlie the progression of sarcopenia and contractile dysfunction during muscle aging. We report two alterations to Ca2+ homeostasis in skeletal muscle that are associated with aging. Ca2+ sparks, which are the elemental units of Ca2+ release from sarcoplasmic reticulum, are silent under resting conditions in young musc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 6  شماره 

صفحات  -

تاریخ انتشار 1999